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Abstract. The main goal of this note is the study of the important properties

of central simple algebras.

1. Introduction

The theory of central simple algebras represents one of the most elegant

and profound chapters in modern algebra, combining elements of ring theory,

Galois theory, and algebraic number theory into a coherent framework with

wide-ranging applications. The systematic study of these structures emerged

in the early 20th century, although their origins can be traced to fundamen-

tal questions in 19th century mathematics. The initial investigations into

what would later be recognized as central simple algebras began with Hamil-

ton’s discovery of quaternions in 1843. Hamilton’s construction of a non-

commutative division algebra over the real numbers challenged the prevailing

algebraic paradigms and opened new avenues of research. Subsequent work

by Cayley on octonions further expanded the landscape of algebraic struc-

tures beyond the commutative realm. A significant theoretical advancement

occurred through Wedderburn’s fundamental theorem (1907), which estab-

lished that every simple algebra of finite dimension over a field is isomorphic

to a matrix algebra over a division ring. This result, refined by Artin in the

1920s into what is now known as the Artin-Wedderburn theorem, provided

the crucial structural characterization that serves as the foundation for the
1
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modern theory. The work of Emmy Noether and her school in the 1920s and

1930s placed the study of central simple algebras within the broader context

of abstract algebra. Brauer’s introduction of what is now called the Brauer

group (1929) represented a particularly significant development, providing

a means to classify central simple algebras over a given field and establish-

ing profound connections to Galois cohomology. Albert’s extensive investiga-

tions in the 1930s further enriched the theory, particularly through his work

on crossed products and division algebras. The theory gained additional mo-

mentum through its connections to class field theory, as developed by Hasse,

Brauer, and Noether, who established the local-global principles governing

central simple algebras over number fields. The emergence of central simple

algebras as a fundamental object of study was solidified by their connections to

various areas of mathematics. Their relationship to projective representations

of groups, established by Schur, their role in the theory of simple algebras with

involution, and their connections to quadratic forms and algebraic groups all

contributed to their centrality in algebraic theory. In contemporary mathemat-

ics, central simple algebras continue to play a pivotal role in various domains,

including representation theory, algebraic K-theory, and arithmetic geometry.

The Brauer group, in particular, has found applications in areas as diverse as

the study of algebraic surfaces and modern cryptographic constructions.

2. Simple rings and modules

A ring here is assumed to be associative with a unity, but not necessarily

commutative and modules will be assumed to be left modules, unless other-

wise stated.
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Definition 2.1. Let R be a ring and M be an R-module. We say that M is a simple

module if it is nonzero and the only R-submodules of M are 0 and M. The ring R is

called a simple ring if it has no two-sided ideals but 0 and R.

Examples 2.2. 1) If k is a field, then the only simple k-modules are the 1-

dimensional k-vector spaces.

2) Take R = Z. Every abelian group of prime order is a simple R-module.

3) If R is a commutative ring, then every simple R-module is isomorphic (as

an R-module) to a quotient ring R/m, where m is a maximal ideal of R.

Definition 2.3. Let R be a nonzero ring with unit. We say that R is a division ring

or a skew field if every nonzero element x ∈ R has a multiplicative inverse, i.e, there

exists x′ ∈ R such that xx′ = x′x = 1.

Example 2.4. Let H = {a+bi + cj +dk | a,b,c,d ∈R}, where i, j and k are indeter-

minates elements subject to the following equalities i2 = j2 = k2 = −1. The ring H

(with basis (1, i, j,k) and endowed with the nutural addition and the multiplication

defined by linear extension of the above equalities) is called the ring of quaternions.

We show that H is a skew field.

Notation 1. Let R be a ring and M be an R-module. We will denote the endomor-

phism ring of M by EndR(M).

Theorem 2.5. (Schur’s lemma)

LetM and N be simple R-modules. If f : M −→N is a homomorphism of modules,

then either f = 0 or f is an isomorphism. In particular, the ring EndR(M) is a skew

field.

Proof. The kernel of f is a submodule of M, so it is either 0 or whole of

M. Likewise, the image of f is a submodule of of N and it must be 0 or whole

of N. If f , 0, then ker(f ) = 0 and im(f ) = N, hence f is an isomorphism. The

second assertion follows then by taking N =M.
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Theorem 2.6. If D is a skew filed, then Mn(D) is a simple ring, for every n ∈N.

Proof. Let Eij be the matrix with (i, j)-coefficient is equal to 1 and all other

coefficients equal to 0. Let A = (amk)1≤m,k≤n be a nonzero matrix, i.e, there exist

i, j ∈ {1, ...,n} such that aij , 0. As D is a division ring, aij is invertible. One

cane easily see that

a−1
ij .EpiAEjp = Epp.

It follwos that the two-sided ideal J generated by the matrix A contains the

unit matrix In, since In = E11 + ... + Enn. Hence J is equal to the ring Mn(D),

which shows that Mn(D) is a simple ring.

Theorem 2.7. (Wedderburn, Rieffel)

Let R be a simple ring and M a nonzero left ideal of R. Then R � EndD(M), where

D = EndR(M).

Proof. Let A =EndD(M) and let h : R −→ A be the map defined by h(α)x =

αx, for all α ∈ R and x ∈M. One can easily see that h is a ring homomorphism.

As the ring R is simple and h is a nonzero ring homomorphism, then ker(h) =

{0}, i.e, h is injective. To prove the surjectivity of h we will show that Im(h) is

a left ideal of A which contains 1A. It is clear that h(1R) = 1A ∈ Im(h), since h

is a ring homomorphism. Let y ∈M and denote by gy the right multiplication

by y, i.e, gy(x) = xy for all x ∈ M, Plainly, gy ∈ D. Let f ∈ A, we have f (xy) =

f (gy(x)) = gy(f (x)) = f (x)y.

It follows that f ◦ h(x)(y) = f (xy) = f (x)y = h(f (x))y, which means, f ◦ h(x) =

h(f (x)), for all x ∈M. If ψ ∈ h(M), i.e, ψ = h(x0) for some x0 ∈M, then for all

f ∈ A we have:

f ◦ψ = f ◦ h(x0) = h(f (x0)) ∈ h(M).
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that is h(M) is a left ideal of A. Since R is a simple ring, then MR = R, where

MR coincides here with the two-sided ideal generated by M. Thus,

h(R) = h(MR) = h(M)h(R)

Hence Im(h) = h(R) is a left ideal of A. Since it contains the unity element 1A,

then it is equal to A. This shwos that h is surjective.

Definition 2.8. An algebra A over a commutative ring R is said to be a simple

algebra if the ring A is simple.

Theorem 2.9. Let K be a field and R a finite-dimentional simple algebra over K.

Then there exists a skew field D such that R �Mn(D).

Proof. Let M be a minimal left ideal of R. In particular, M is a simple R-

module. By Schur’s lemmaD =EndR(M) is a skew field and by Theorem 2.7 we

have R �EndD(M). SinceM is finite-dimentional as a vector space over K, then

it is finite-dimentional over D. It follows then that EndD(M) �Mn(D), where

n = dimD(M), so R �Mn(D).

Theorem 2.10. Let D be a division ring and R =Mn(D). Then the following state-

ments hold

1) The ideals

Li =


n∑
j=1

ejiαj | αj ∈D


are minimal left ideals of R. Moreover, R is a finite direct sum of the ideal

Li , that is,

Mn(D) = L1 ⊕ ...⊕Ln.

2) All simple modules over R are isomorphic.

3) If M is a nonzero R-module, then M is a direct sum of simple R-modules.
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Theorem 2.11. Let D and ∆ be skew fields. If Mm(D) � Mn(∆), then m = n and

D � ∆.

Proof. Let R = Mm(D) and R′ = Mn(∆). As one can see Dm can be consid-

ered (in a canonical way) as a left R-module and ∆n as a left R′-module. Up to

identification, one can use Theorem 2.10(1) to see that Dm is indeed a simple

R-module and ∆n is a simple R′-module. Hence, again by assertion 2 in the

same theorem above, we have Dm � ∆n, therefore EndR(Dm) � EndR′ (∆n).Now,

we aim to show that EndR(Dm) �D ( as rings). For this, let ψ : D −→ EndR(Dm)

be the map defined by ψ(δ)(x) = xδ, for all δ ∈ D and x ∈ Dm. One can easily

see that ψ is a ring homomorphism. If δ and γ are elements of D such that

ψ(δ) = ψ(γ), then, in particular, δ = ψ(δ)(1D) = ψ(γ)(1D) = γ. This proves that

ψ is injective. For the surjectivity, let f ∈ EndR(Dm). It is clear that Dm is a

free right D-module. Let {e1, ..., em} be the canonical basis of Dm. Plainly, there

exists δ1, ...,δm ∈D such that

f (e1) = e1δ1 + ...+ emδm.

We have also f (e1) = f (e11e1) = e1δ1. Therefore, for all j ∈ {1, ...,m}, we have

f (ej) = f (ej1e1)

= ej1(f (e1))

= ej1(e1δ1)

= ejδ1.

Consequently, f (ej) = ψ(δ1)(ej). Since the ej describe the elements of a basis of

Dm, we get f = ψ(δ1). Therfore, ψ is surjective. Subsequently,

D � EndR(Dm) � EndR′ (∆
n) � ∆.

Also, from the equality m2 = dimD(R) = dim∆(R′) = n2, we get m = n.
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Lemma 2.12. Let R be a ring. If we consider R as a right R-module, then R is

canonically isomorphic to the ring EndR(R), i.e, R �EndR(R).

Proof. Let ψ : R −→EndR(R) be the map defined by ψ(a) = La for all a ∈ R,

where La is the left multiplication by a, i.e, La(x) = ax for all x ∈ R. It is clear

that La ∈ EndR(R) and that ψ is a ring homomorphism. Let a be any element

of R such that La = 0. In particular, La(1R) = a = 0, that is ψ is injective. Let

f ∈EndR(R). Since R is considered as a right R-module, then f (x) = f (1x) =

f (1)x for all x ∈ R, hence f = Lf (1). Consequently, ψ is surjective.

Theorem 2.13. (Wedderburn)

Let R be a simple ring which has a minimal right idealM. Then there is a skew field

D such that R �Mn(D).

Proof. Since R is simple, then RM = R. Therefore every element of R is a

linear combination of elements of M. In particular,

1 = a1x1 + ...+ anxn

for some ai ∈ R and xi ∈ M, i ∈ {1, ...,n}. Such a decomposition is not unique,

we choose the shorten one, which means, with a minimal n. Plainly, we have

R = a1M ⊕ ...⊕ anM

Since M is a simple module, then we have M � aiM for all i ∈ {1, ...,n}. It

follows that

R �M ⊕ ...⊕M =Mn

Let D =EndR(M), which is a skew field, then by Lemma 2.12 we have

R � EndR(R) �EndR(Mn) �Mn(EndR(M)) �Mn(D)
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3. Central simple algebras

Definition 3.1. Let A be a K-algebra. We say that A is central, if its center is equal

to the field K. i.e, Z(A) = K. To each subset B of A we associate the subalgebra (of

A):

ZA(B) = {a ∈ A | ab = ba for all b ∈ B}

which is called the centralizer of B in A.

Examples 3.2. 1) The quaternion algebra H defined in Example 2.4(2) is cen-

tral over R.

2) If K is an arbitrary field, then Mn(K) is central simple over K.

3) Every algebra is central over its center.

Lemma 3.3. Let B and C be K-algebras, and let A = B⊗K C. Then we have:

1) ZA(B⊗K K) = Z(B)⊗K C.

2) ZA(K ⊗K C) = B⊗K Z(C).

Proof. Let {y1, ..., yn} be a basis of C. Every element w of A can be written

as follows:

w = x1 ⊗ y1 + ...+ xn ⊗ yn

where xi are uniquely determined byw. Ifw ∈ ZA(B⊗K), then (x⊗1)w = w(x⊗1)

for all x ∈ B. This implies that:

(xx1 − x1x)⊗ y1 + ...+ (xxn − xnx)⊗ yn = 0 f or all x ∈ B.

It follows that xxi = xix for all x ∈ B and i ∈ {1, ...,n}, that is, every xi is an

element of Z(B). Consequently, w ∈ Z(B) ⊗ C, which shows that ZA(B ⊗ K) ⊆

Z(B)⊗C. The reverse inclusion is clear.
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Proposition 3.4. Let A,B and C as in the Lemma 3.3. Then we have

Z(A) = Z(B)⊗K Z(C).

In particular, If B and C are central, then A = B⊗K C is also central.

Proof. It is easy to see that Z(A) = ZA(B ⊗ K) ∩ ZA(K ⊗ C). It follows by

Lemma 3.3 that:

Z(A) = (Z(B)⊗C)∩ (B⊗Z(C)) = Z(B)⊗Z(C).

If B and C are central, then Z(B) = K = Z(C). Therfore, Z(A) = K ⊗K � K, that

is, A is central.

Lemma 3.5. Let B and C be subalgebras of a K-algebra A with C ⊆ ZA(B). Assume

that B is central simple (over K). If x1, ...,xn are linearly independent elements of B

and y1, ..., yn ∈ C such that x1y1 + ...+ xnyn = 0, then yi = 0, for all i ∈ {1, ...,n}.

Remark 3.6. The tensor product of simple algebras is not necessarily simple. For

example the R-algebra C⊗
R
C is not simple, although C is simple over R.

The following theorem gives a sufficient condition for the simplicity of

the tensor product of two algebras.

Theorem 3.7. Let B and C be K-algebras. Then the following statements hold.

1) If B is central simple and C is simple, then B⊗K C is simple.

2) If B and C are both central simple, then B⊗K C is central simple.

4. The Brauer group

Definition 4.1. Let R be a ring. The opposite of R is defined to be the ring whose

elements are the same elements as in R, with addition law defined to be the addition
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in R, but with multiplication performed in the reverse order, i.e, the opposite of

(R,+, .) is the ring (R,+,∗) whose multiplication ∗ is defined by x ∗ y = y.x for all

x,y ∈ R. This ring will be denoted by Rop.

Remarks 4.2. The following statements hold.

1) The opposite of the opposite of R is isomorphic to R, i.e, (Rop)op = R.

2) Rop = R if and only if R is commutative.

3) The right ideals of a ring R are the left ideal of its opposite, and vice versa.

4) A ring R is central (resp., simple; resp., a division ring) if and only if its

opposite ring is so.

Theorem 4.3. If A is an n-dimentional central simple algebra over a filed K, then

A⊗K Aop �Mn(K).

Proof. Since Mn(K) is isomorphic to EndK (A), it suffices to prove that A⊗

Aop � EndK (A). Let a ∈ A and b ∈ Aop. The map:

ψa,b : A −→ A

x 7−→ axb

is clearly an element of EndK (A). It induces a map

ψ : A⊗K Aop −→ EndK (A)

(a,b) 7−→ ψa,b

Plainly, ψ is bilinear and is also multiplicative since ψac,db(x) = acxdb = ψa,b ◦

ψc,d(x), for all x ∈ A and (a,b), (c,d) ∈ A ⊗K Aop. It follows by the universal

property of the tensor product that there is an algebra homomorphism

φ : A⊗K Aop −→ EndK (A).

By the fourth assertion of the last remark and Theorem 3.7, the algebra A⊗Aop

is simple. Hence φ is injective. Moreover, we have dim(A ⊗K Aop) = n2 =
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EndK (A), so φ is bijective.

We define an equivalence relation on central simple algebras over a field K

as indicated in the following definition.

Definition 4.4. Let A and B be central simple K-algebras. We say that A and B are

similar or Brauer equivalent and we denote A ∼ B, if there is a division ring D such

that A �Mm(D) and B �Mn(D), for suitable positive integers m,n. Equivalently,

they are similar, if Mn(A) �Mn(B), for some positive integer n.

Notation: One can easily see that the similarity relation defined above, is

an equivalence relation. The similarity class of a central simple algebra A will

be denoted simply by [A], and the set of all Brauer equivalence classes will be

denoted by Br(K). In particular, K andMn(K) have the same class in Br(K), for

all n ∈N.

Proposition 4.5. The similarity relation is compatible with the tensor product, i.e,

if A,B,A1 and B1 are central simple algebras over a field K with A ∼ B and A1 ∼ B1,

then A⊗K A1 ∼ B⊗K B1.

Proof. Indeed, let D and D1 be division K-algebras such that

A �Mn(D), B �Mm(D), A1 �Mp(D1) and B1 �Ms(D1).

Then, we have

A⊗K A1 �Mn(D)⊗KMp(D1) �Mnp(D ⊗K D1),

B⊗K B1 �Mm(D)⊗KMs(D1) �Mms(D ⊗K D1).

Our result follows from these isomorphisms.
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Theorem 4.6. If K is an arbitrary field, then Br(K) is an abelian group with respect

to the law induced by the tensor product: [A].[B] := [A⊗K B], for any central simple

algebras A and B over K. This group is called the Brauer group of the field K.

Proof. By Proposition 4.5 this law is well defined. Plainly, for any central

simple K-algebra A, we have A⊗KK � A, so [K](= [Mn(K)] for any positive inte-

ger n) is the identity element of Br(K). By Therorem 4.3, the opposed element

of [A] in Br(K) is given by the class of its opposite algebra, that is, −[A] = [Aop].

Also, for any central simple K-algebras C, D, we have C ⊗K D �D ⊗K C, which

shows that Br(K) is an abelian group.

Definition 4.7. Let A be a central simple K-algebra. The order of [A] in the Brauer

group is called the exponent of A and will be denoted by exp(A).

Example 4.8. The exponent of the quaternion algebra H defined in Example 2.4 is

2.

Proposition 4.9. If A and B are central simple K-algebras, then A � B if and only

if A ∼ B and dimK (A) = dimK (B).

Proof. If A ∼ B, then there is a skew field D such that A � Mm(D) and

B �Mn(D) for some integer m,n. Since A and B have the same dimension, then

n =m, hence A �Mn(D) � B. The reverse is obvious.

Lemma 4.10. Assume that K is an algebraically closed field and let D be a division

algebra over the field K, Then D = K. That is, the only division algebra over K is K

itself.

Proof. Let dimK (D) = m and let α ∈ D. Since the powers 1,α, ...,αm are

linearly dependent over K, α is a root of a monic polynomial f ∈ K[X]. We

choose f with minimal degree; let β be a root of f in K, then f (X) = g(X)(X−β)
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for some g ∈ K[X]. As the degree of f is minimal, then g(α) , 0. Since D is a

divison algebra, then necessarily α = β (∈ K). This proves that D ⊆ K. The

reverse inclusion is clear.

Corollary 4.11. The Brauer group of every algebraically closed field is trivial, i.e,

if K is an algebraically closed field, then Br(K) = {1} .

Proof. This follows from Lemma 4.10.

Definition 4.12. Let A be a K-algebra and ψ an automorphism of A. We say that

ψ in an inner automorphism, if there is an invertible element a of A such that

ψ(x) = axa−1 for all x ∈ A.

Theorem 4.13. (Skolem, Noether)

Let A and B be K-algebras with A central simple and B simple. Let f ,g : B −→ A

be two K-algebra homomorphisms. Then there is an invertible element a ∈ A such

that f (b) = ag(b)a−1 for all b ∈ B.

Proof. We first suppose that A = Mn(K), for some n ∈ N. It is clear that

Kn can be endowed with a natural Mn(K)-module and so, by means of the

homomorphsim f (resp., g)Kn can also be seen as a B-module. More explicitly,

by means of the action bx = f (b)x for all b ∈ B and x ∈ Kn (resp., bx = g(b)x for

b ∈ B and x ∈ Kn). We denote these B-modules by Vf and Vg respectively. Since

B is simple, it follows by Theorems 2.9 and 2.10 that Vf and Vg are isomorphic.

Let ψ : Vf −→ Vg be a B-isomorphism. Hence we have

ψ(f (b)x) = g(b)ψ(x) f or all x ∈ Kn and b ∈ B.

Since ψ is an isomorphism, then f (b) = ψ−1g(b)ψ and ψ is clearly an element

of EndK (Kn) �Mn(K) = A. This shows the result in this case.

For the general case, A ⊗K Aop is a matrix algebra by Theorem 4.3 and the
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algebra B⊗K Aop is simple by Theorem 3.7. We apply the fist part to the maps

f ⊗ id,g ⊗ id : B⊗K Aop −→ A⊗K Aop

There exists an invertible element b ∈ A⊗K Aop such that

(1) f ⊗ id(x⊗ y) = b(g ⊗ id)(x⊗ y)b−1, f or all x ∈ B and y ∈ Aop.

In particular, if we take x = 1 we get 1⊗ y = b(1⊗ y)b−1 for all y ∈ Aop, which

means that, b is an element of ZA⊗KAop(K ⊗K Aop), hence an element of A⊗K K

by the Lemma 3.3. Thus, b = b′ ⊗ 1 for some b′ ∈ A. Taking y = 1 in (1) we get

f (x) = b′g(x)b′−1 for all x ∈ B, which ends the proof.

Corollary 4.14. Let A be a central simple K-algebra. Then every automorphism of

A is an inner automorphism.

Proof. Let ψ be an algebra automorphism of A. To show that ψ is an inner

automorphism of A, it suffices to take in the previous theorem B = A, f = id

and g = ψ.

Theorem 4.15. Let A be a central simple K-algebra and let B be a simple K-

subalgebra of A. Then its centralizer C = ZA(B) is also simple. Moreover, we have:

dimK (A) = dimk(B)dimK (C).

Proof. To show that C is simple, we will show that C � EndT (A), where T

is the simple K-algebra B⊗K Aop. Note that the K-algebra A can be viewed as

a left T -module for the operation defined by linearly extending the following

equalites:

(β ⊗α)x = βxα, f or all α ∈ Aop, β ∈ B and x ∈ A.

Consider the map ψ : C −→ EndT (A), defined by ψ(c)(x) = cx, for all c ∈ C and

x ∈ A. It is easy to see that ψ is a K-algebra homomrphsim. Let c ∈ Ker(ψ), i.e,
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ψ(c) is the zero endomorphism. In particular, we have c = ψ(c)(1) = 0, hence ψ

is injective. One can easily see that ψ is also surjective. Indeed, let f ∈ EndT (A)

and let c = f (1), then for every element b ∈ B we have:

cb = (1⊗ b)c = (1⊗ b)f (1) = f ((1⊗ b)1) = f (b).

we have also

bc = (b⊗ 1)c = (b⊗ 1)f (1) = f ((b⊗ 1)1) = f (b).

Consequently, bc = cb, that is, c ∈ C. Moreover, for any x ∈ A, we have

ψ(c)(x) = cx = (1⊗ x)c = (1⊗ x)f (1) = f ((1⊗ x)1) = f (x)

Thus f = ψ(c), which proves that ψ is surjective.

Now, we prove the dimention equality. From Theorem 3.7, the K-algebra T

is simple and by Theorem 2.10, there is a unique T -module M, up to isomor-

phism, and every T -module is a finite direct sum of copies of M. In particular,

A � Mn, for some n ∈ N. Let D = EndT (M). As M is a simple T -module, it

follows by Schur’s lemma that D is a division algebra. We proved above that

C � EndT (A). Hence we have

C � EndT (A) � EndT (Mn) �Mn(EndT (M)) =Mn(D).

Therfore, we have

dimK (C) = dimK (Mn(D)) = n2 dimK (D). (1)

It is clear that M is also a D-module, so by Theorem 2.10 we have M � Ds, for

some s ∈N. we also have

T = EndD(M) � EndD(Ds) �Ms(D).

Thus A �Dns, hence

dimK (A) = nsdimK (D). (2)
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On the other hand, we have

dimK (A)dimK (B) = dimK (T ) = dimK (Ms(D)) = s2 dimK (D). (3)

From the identities (1), (2) and (3) we get dimK (B)dimK (C) = dimK (A) = nsdimK (D).

Corollary 4.16. Let A,B and C as in the Theorem 4.15. Then the following prop-

erties hold.

1) ZA(ZA(B)) = B. In particular, we have Z(ZA(B)) = Z(B).

2) If B is central, then A � B⊗K C.

Proof. Clearly we have B ⊆ ZA(ZA(B)). For the reverse inclusion, take C′ =

ZA(C). By Theorem 4.15 C is a simple algebra and we have : dimK (C)dimK (C′) = dimK (A).

dimK (C) = dimK (A)
dimK (B)

So, dimK (B) = dimK (C′) = dimK (ZA(ZA(B))). This proves the reverse inclusion.

It follows then that

Z(ZA(B)) = ZA(ZA(B))∩ZA(B) = B∩ZA(B) = Z(B).

Assume that B is central and let φ : B ⊗K C −→ A be the K-algebra homo-

morphism defined by φ(b ⊗ c) = bc, for all b ∈ B and c ∈ C. Since B ⊗K C is

simple, then φ is injective. It is also surjective since A and B⊗C have the same

dimension.

5. Central simple algebras under field extensions

In this section, we define the scalar extension of a K-algebra by an arbi-

trary field extension of K. We focus especially on the case where the algebra
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is simple, then we define and study properties of the reduced norm and trace

which are natural generalisations of the classical norm and trace.

Definition 5.1. Let A be a K-algebra and let L be a field extension of K. The L-

algebra A⊗K L is called the scalar extension of A by L. We will denote it simply by

AL.

Remarks 5.2. Let A and L as in Definition 5.1. Then we have:

1. dimK (A) = dimL(AL).

2. When A is a central simple K-algebra, then AL is also central simple over L.

Definition 5.3. Let A be a central simple K-algebra. We say that A is split if A = 1

in Br(K), that is, A �Mn(K) for some n ∈N.

Definition 5.4. Let A be a central simple K-algebra and let L be a field extension

of K. If the L-algebra AL is split, then we say that L is a splitting field of A.

An important example of splitting field will be given by the following

lemma.

Lemma 5.5. Let A be a central simple algebra over a field K. Then the algebraic

closure K of K is a splitting field of A. Moreover, the dimension of A over K is a

square.

Proof. Extend the K-algebra A to the algebraic closure K. As seen in Re-

mark 5.2, AK is simple and by the Wedderburn’s theorem, there is a central

divison K-algebra D such that AK � Mn(D), for some integer n. By Lemma

4.10, we get D = K, thus AK �Mn(K), that is, A is split by K . We have also

dimK (A) = dimK (AK ) = dimK (Mn(K) = n2.

Definition 5.6. Let A be a central simple K-algebra with dimK (A) = n2. The inte-

ger n is called the degree of A and will be denoted by deg(A).
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Definition 5.7. LetA =Mn(D) be a central simpleK-algebra, whereD is a division

central K-algebra. The degree of D is called the index of A and will be denoted by

ind(A).

Definition 5.8. Let A be a central simple K-algebra. A subfield of A is a subalgebra

E of A (over K) such that E is a field. We say that E is a maximal subfield of A, if

there is no other subfield F of A that contains E. We say that E is a strictly maximal

subfield of A if dimKE = deg(A).

Theorem 5.9. Let A be a central simple K-algebra and L a subfield of A. Let B =

ZA(L), then AL ∼ B.

Corollary 5.10. Let A be a central simple K-algebra of degree n. If L is strictly

maximal subfield of A, then L is a splitting field of A.

Proof. Since L is assumed to be strictly maximal in A, then by definition

[L : K] = n. Note that A can be seen as a left A-module and also as a right L-

module. Consider the map ψ : A⊗K L −→ EndL(A) �Mn(L) which is defined

by

ψ(a⊗λ)(b) = abλ, f or all a,b ∈ A and λ ∈ L.

One can easily see that ψ is an L-algebra homomorphism. As seen in Remark

5.2(2), the L-algebra A⊗K L is simple, hence ψ is injective. ψ is also surjective

since dimK (AL) = n3 = dimK (Mn(L)). Consequently, AL �Mn(L), which means

that L is a splitting field of the K-algebra A.

Definition 5.11. Let K be a field of characteristic p > 0 and L a field extension of

K. An element α ∈ K is called purely inseparable over K if there is n ∈N such that

αp
n ∈ K. The extension L/K is said to be purely inseparable if every element of L is

purely inseparable over K.
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Remarks 5.12. (1) Purely inseparable extensions are the extreme opposite of

separable extensions.

(2) Recall that every extension of a field of characteristic zero is separable.

Lemma 5.13. Let D be a central division K-algebra. Then, there exists d ∈ D\K

such that d is separable over K.

Proof. If char(K) = 0, then we are done. Assume that char(K) = p > 0 and

suppose that all elements of D\K are purely inseparable over K. Take a ∈D\K

with ap
n ∈ K for some integer n, then consider the K-linear map

f : D −→ D

x 7−→ xa− ax.

By simple computation, one sees that f p
n
(x) = xap

n − apnx = 0 because ap
n ∈ K.

As a < K, then f is not the zero homomorphism, so there is y ∈ D such that

f (y) , 0. Therefore, there exists k ∈ N
∗ such that f k(y) = 0 and f k−1(y) , 0.

Let x := f k−1(y) and z := f k−2(y). We then have xa− ax = f (x) = f k(y) = 0, thus

xa = ax. We have also f (z) = za− az = x. It follows that au = ua where u = a−1x.

Therefore, au = x = za− az. Since au = ua, then au−1 = u−1a,. Let c = zu−1, then

a = (za− az)u−1 = zu−1a− azu−1 = ca− ac.

Thus, c = 1 + aca−1. Since c is not in K, then by assumption it is purely insepa-

rable over K, hence there is m ∈N such that cp
m ∈ K. Hence we have

cp
m

= (1 + aca−1)p
n

= 1 + (aca−1)p
m

= 1 + acp
n
a−1

= 1 + cp
m
,

which is not true.

The result of the last Lemma assures the existence of a separable splitting field

for any central simple algebra; precisely, we have the following theorem.
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Theorem 5.14. Let D be a central division K-algebra. Then D has a maximal

separable subfield. In particular, every central simple K-algebra has a separable

splitting field.

Let A be a central simple K-algebra of degre n and let L be any splitting

field of A. Then, AL � Mn(L). Let φ : AL −→ Mn(L) be an aribtrary isomor-

phism. The characteristic polynomial of a matrix N ∈Mn(L) is given by:

χ(X,N ) := χL(X,N ) := det(XIn −N ) ∈ L[X].

χ(X,N ) = Xn +αn−1X
n−1 + ...+α0, where α0 = (−1)ndet(N ) and αn−1 = −tr(N ).

Definition 5.15. Let A,L and φ be as in above. The characteristic polynomial of

an element a ∈ AL (with respect to the representation φ) is is defined by χ(X,a) :=

χ(X,φ(a)).

Lemma 5.16. The definition of the characteristic polynomial does not depend of

the choice of the isomorphism φ and the splitting field L.

Proof. Let f : AL −→ Mn(L) be an other isomorphism. We have to check

that χ(X,φ(a)) = χ(X,f (a)). By Skolem-Noether theorem, there is an invertible

matrix N ∈Mn(L) such that φ(a) =Nf (a)N−1. Hence, we have

χ(X,φ(a)) = det(XIn −φ(a))

= det(XIn −Nf (a)N−1)

= det(N (XIn − f (a))N−1)

= det(XIn − f (a))

= χ(X,f (a)).

Remark 5.17. The K-algebra A can be seen as a sub-K-algebra of AL via the map

x 7−→ x⊗ 1. Moreover, if a is an element of A, then χ(X,a) ∈ K[X].
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Definition 5.18. Let A be a central simple K-algebra of degree n. Let χ(X,a) (∈

K[X]) for an element a ∈ A, be defined as in above. Write χ(X,a) = xn+αn−1Xn−1 +

... +α0, with αi ∈ K, the element (−1)nα0 is called the reduced norm of a and will

be denoted simply by N (a) or NrdA(a). The reduced trace of a is defined to be the

element −αn−1, and will be denoted by S(a) or T rdA(a).

Remark 5.19. The bilinear form trace T : A × A −→ K defined by T (a,b) =

T rdA(ab) is nondegenerate.

Corollary 5.20. Let A be a central simple K-algebra of degree n. Then the following

statement hold

1) The map S : A −→ K is K-linear and N (ab) =N (a)N (b), for all a,b ∈ A.

2) S(ab) = S(ba), for all a,b ∈ A.

3) S(α) = nα and N (α) = αn, for all α ∈ K .

4) Let a ∈ A, then a is invertible in A if and only if N (a) , 0. In particular, the

restriction of N to U (A) defines a group homomorphism N : U (A) −→ K∗,

where U (A) is the group of invertible elements of A.
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