NOTE ON CENTRAL SIMPLE ALGEBRAS AND THE BRAUER GROUP

YASSINE AIT MOHAMED

AsstrACT. The main goal of this note is the study of the important properties

of central simple algebras.

1. Introduction

The theory of central simple algebras represents one of the most elegant
and profound chapters in modern algebra, combining elements of ring theory,
Galois theory, and algebraic number theory into a coherent framework with
wide-ranging applications. The systematic study of these structures emerged
in the early 20th century, although their origins can be traced to fundamen-
tal questions in 19th century mathematics. The initial investigations into
what would later be recognized as central simple algebras began with Hamil-
ton’s discovery of quaternions in 1843. Hamilton’s construction of a non-
commutative division algebra over the real numbers challenged the prevailing
algebraic paradigms and opened new avenues of research. Subsequent work
by Cayley on octonions further expanded the landscape of algebraic struc-
tures beyond the commutative realm. A significant theoretical advancement
occurred through Wedderburn’s fundamental theorem (1907), which estab-
lished that every simple algebra of finite dimension over a field is isomorphic
to a matrix algebra over a division ring. This result, refined by Artin in the
1920s into what is now known as the Artin-Wedderburn theorem, provided

the crucial structural characterization that serves as the foundation for the
1
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modern theory. The work of Emmy Noether and her school in the 1920s and
1930s placed the study of central simple algebras within the broader context
of abstract algebra. Brauer’s introduction of what is now called the Brauer
group (1929) represented a particularly significant development, providing
a means to classify central simple algebras over a given field and establish-
ing profound connections to Galois cohomology. Albert’s extensive investiga-
tions in the 1930s further enriched the theory, particularly through his work
on crossed products and division algebras. The theory gained additional mo-
mentum through its connections to class field theory, as developed by Hasse,
Brauer, and Noether, who established the local-global principles governing
central simple algebras over number fields. The emergence of central simple
algebras as a fundamental object of study was solidified by their connections to
various areas of mathematics. Their relationship to projective representations
of groups, established by Schur, their role in the theory of simple algebras with
involution, and their connections to quadratic forms and algebraic groups all
contributed to their centrality in algebraic theory. In contemporary mathemat-
ics, central simple algebras continue to play a pivotal role in various domains,
including representation theory, algebraic K-theory, and arithmetic geometry.
The Brauer group, in particular, has found applications in areas as diverse as

the study of algebraic surfaces and modern cryptographic constructions.

2. Simple rings and modules

A ring here is assumed to be associative with a unity, but not necessarily
commutative and modules will be assumed to be left modules, unless other-

wise stated.
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Definition 2.1. Let R be a ring and M be an R-module. We say that M is a simple
module if it is nonzero and the only R-submodules of M are 0 and M. The ring R is
called a simple ring if it has no two-sided ideals but 0 and R.

Examples 2.2. 1) If k is a field, then the only simple k-modules are the 1-
dimensional k-vector spaces.
2) Take R = Z. Every abelian group of prime order is a simple R-module.
3) If R is a commutative ring, then every simple R-module is isomorphic (as

an R-module) to a quotient ring R/m, where m is a maximal ideal of R.

Definition 2.3. Let R be a nonzero ring with unit. We say that R is a division ring
or a skew field if every nonzero element x € R has a multiplicative inverse, i.e, there

exists x’ € R such that xx’ =x'x = 1.

Example 2.4. Let H={a+bi+cj+dk| a,b,c,d € R}, where i, j and k are indeter-
minates elements subject to the following equalities i*> = j> = k* = —1. The ring H
(with basis (1,1, j, k) and endowed with the nutural addition and the multiplication
defined by linear extension of the above equalities) is called the ring of quaternions.

We show that IH is a skew field.

Notation 1. Let R be a ring and M be an R-module. We will denote the endomor-
phism ring of M by Endg(M).

Theorem 2.5. (Schur’s lemma)
Let M and N be simple R-modules. If f : M — N is a homomorphism of modules,
then either f = 0 or f is an isomorphism. In particular, the ring Endg(M) is a skew

field.

Proof. The kernel of f is a submodule of M, so it is either 0 or whole of
M. Likewise, the image of f is a submodule of of N and it must be 0 or whole
of N. If f # 0, then ker(f) =0 and im(f) = N, hence f is an isomorphism. The
second assertion follows then by taking N = M.
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Theorem 2.6. If D is a skew filed, then M, (D) is a simple ring, for every n € IN.

Proof. Let E;; be the matrix with (i, j)-coefficient is equal to 1 and all other
coefficients equal to 0. Let A = (a,,x)1<m k<n b€ @ nonzero matrix, i.e, there exist
i,j € {1,...,n} such that ajj # 0. As D is a division ring, ajj is invertible. One

cane easily see that
-1 _

It follwos that the two-sided ideal | generated by the matrix A contains the
unit matrix [, since I,, = E1; +... + E,;;,. Hence ] is equal to the ring M, (D),

which shows that M,(D) is a simple ring.

Theorem 2.7. (Wedderburn, Rieffel)
Let R be a simple ring and M a nonzero left ideal of R. Then R = Endp (M), where
D = Endg(M).

Proof. Let A =Endp(M) and let h: R — A be the map defined by h(a)x =
ax, for all a € R and x € M. One can easily see that / is a ring homomorphism.
As the ring R is simple and h is a nonzero ring homomorphism, then ker(h) =
{0}, i.e, h is injective. To prove the surjectivity of h we will show that Im(h) is
a left ideal of A which contains 14. It is clear that h(1g) = 14 € Im(h), since h
is a ring homomorphism. Let y € M and denote by g, the right multiplication
by v, i.e, g,(x) = xy for all x € M, Plainly, g, € D. Let f € A, we have f(xy) =
f(gy(x)) = gy(f (x)) = f(x)y.

It follows that f o h(x)(y) = f(xy) = f(x)y = h(f(x))y, which means, f o h(x) =
h(f(x)), for all x € M. If ¢ € h(M), i.e, P = h(x,) for some xy, € M, then for all
f € A we have:

fow=foh(xg)=h(f(xo)) € H(M).
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that is h(M) is a left ideal of A. Since R is a simple ring, then MR = R, where
MR coincides here with the two-sided ideal generated by M. Thus,

h(R) = h(MR) = h(M)h(R)

Hence Im(h) = h(R) is a left ideal of A. Since it contains the unity element 14,

then it is equal to A. This shwos that h is surjective.

Definition 2.8. An algebra A over a commutative ring R is said to be a simple

algebra if the ring A is simple.

Theorem 2.9. Let K be a field and R a finite-dimentional simple algebra over K.
Then there exists a skew field D such that R = M,,(D).

Proof. Let M be a minimal left ideal of R. In particular, M is a simple R-
module. By Schur’s lemma D =Endg(M) is a skew field and by Theorem[2.7]we
have R =Endp(M). Since M is finite-dimentional as a vector space over K, then
it is finite-dimentional over D. It follows then that Endp(M) = M, (D), where
n =dimp(M), so R = M, (D).

Theorem 2.10. Let D be a division ring and R = M,,(D). Then the following state-

ments hold

1) The ideals

n
L;= Zejiocj | a; eD
=1
are minimal left ideals of R. Moreover, R is a finite direct sum of the ideal
L;, that is,
M,D)=L, ®..8L,.
2) All simple modules over R are isomorphic.

3) If M is a nonzero R-module, then M is a direct sum of simple R-modules.
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Theorem 2.11. Let D and A be skew fields. If M,,(D) = M,,(A), then m = n and
D = A.

Proof. Let R = M,,,(D) and R’ = M,(A). As one can see D™ can be consid-
ered (in a canonical way) as a left R-module and A" as a left R’-module. Up to
identification, one can use Theorem [2.10(1) to see that D™ is indeed a simple
R-module and A” is a simple R’-module. Hence, again by assertion 2 in the
same theorem above, we have D™ = A", therefore Endg(D™) = Endg/(A"). Now,
we aim to show that Endg(D™) = D ( as rings). For this, let ) : D — Endg(D")
be the map defined by 1(9)(x) = x9, for all 6 € D and x € D™. One can easily
see that ¢ is a ring homomorphism. If o and y are elements of D such that
P(0) = P(y), then, in particular, 6 = P(0)(1p) = P(y)(1p) = y. This proves that
Y is injective. For the surjectivity, let f € Endgr(D™). It is clear that D™ is a
free right D-module. Let {ey,...,¢,,} be the canonical basis of D™. Plainly, there

exists 01,...,0,, € D such that
f(el) =€ 61 +...+ emém.

We have also f(e;) = f(ey1e1) = e101. Therefore, for all j € {1,..., m}, we have

fej)

f(ejlel)
ej1(f(e1))
ej1(e101)

€j51.

Consequently, f(e;) =1 (61)(¢j). Since the e; describe the elements of a basis of
D™, we get f =1 (01). Therfore, 1 is surjective. Subsequently,

D = Endgr(D™) = Endg/(A") = A.

Also, from the equality m? = dimp(R) = dimy (R’) = n%, we get m = n.
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Lemma 2.12. Let R be a ring. If we consider R as a right R-module, then R is
canonically isomorphic to the ring Endg(R), i.e, R =Endg(R).

Proof. Let ¢ : R —Endg(R) be the map defined by ¢(a) =L, for all a € R,
where L, is the left multiplication by a, i.e, L,(x) = ax for all x € R. It is clear
that L, € Endg(R) and that ¢ is a ring homomorphism. Let a be any element
of R such that L, = 0. In particular, L,(1g) = a = 0, that is ¢ is injective. Let
f €Endg(R). Since R is considered as a right R-module, then f(x) = f(1x) =
f(1)x for all x € R, hence f = Lg(1). Consequently, ¢ is surjective.

Theorem 2.13. (Wedderburn)
Let R be a simple ring which has a minimal right ideal M. Then there is a skew field
D such that R = M,,(D).

Proof. Since R is simple, then RM = R. Therefore every element of R is a
linear combination of elements of M. In particular,
l=ayx;+...+a,x,

for some a; € R and x; € M, i € {1,...,n}. Such a decomposition is not unique,

we choose the shorten one, which means, with a minimal #n. Plainly, we have
R = alM &D... @anM

Since M is a simple module, then we have M = g;M for all i € {1,...,n}. It

follows that

R=Mo..oM=M"

Let D =Endg(M), which is a skew field, then by Lemma we have

R = Endg(R) =Endr(M") = M, (Endr(M)) = M, (D)
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3. Central simple algebras

Definition 3.1. Let A be a K-algebra. We say that A is central, if its center is equal
to the field K. i.e, Z(A) = K. To each subset B of A we associate the subalgebra (of
A):

Za(B)={acA| ab="ba for all b € B}

which is called the centralizer of B in A.

Examples 3.2. 1) The quaternion algebra H defined in Example[2.42) is cen-
tral over R.
2) If K is an arbitrary field, then M,,(K) is central simple over K.

3) Every algebra is central over its center.

Lemma 3.3. Let B and C be K-algebras, and let A = B®g C. Then we have:

1) Zu(B®x K) = Z(B)® C.
2) Z4(K ® C) = Boy Z(C).

Proof. Let {yy,...,v,} be a basis of C. Every element w of A can be written

as follows:

w=x1QY;+..+x,8Y,
where x; are uniquely determined by w. If w € Z4(B®K), then (x®1)w = w(x®1)
for all x € B. This implies that:

(xx1 —x1%)® Y1 +... + (xx, —x,x) ®y,, = 0 forall x € B.

It follows that xx; = x;x for all x € B and i € {1,...,n}, that is, every x; is an
element of Z(B). Consequently, w € Z(B) ® C, which shows that Z4(B® K) C

Z(B)®C. The reverse inclusion is clear.
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Proposition 3.4. Let A, B and C as in the Lemma Then we have
Z(A) = Z(B)®k Z(C).

In particular, If B and C are central, then A = B®g C is also central.

Proof. It is easy to see that Z(A) = Zy(B® K) N Z4(K ® C). It follows by
Lemma [3.3]that:

Z(A) = (Z(B)® C) N (B®Z(C)) = Z(B)® Z(C).

If B and C are central, then Z(B) = K = Z(C). Therfore, Z(A) = KQ K = K, that

is, A is central.

Lemma 3.5. Let B and C be subalgebras of a K-algebra A with C C Z4(B). Assume
that B is central simple (over K). If x1,...,x,, are linearly independent elements of B

and vy,...,y, € C such that x,y1 +... + x,9,, = 0, then y; = 0, for all i € {1,...,n}.

Remark 3.6. The tensor product of simple algebras is not necessarily simple. For

example the R-algebra C®y C is not simple, although C is simple over R.

The following theorem gives a sufficient condition for the simplicity of

the tensor product of two algebras.

Theorem 3.7. Let B and C be K-algebras. Then the following statements hold.

1) If B is central simple and C is simple, then B®y C is simple.
2) If Band C are both central simple, then B® C is central simple.

4. The Brauer group

Definition 4.1. Let R be a ring. The opposite of R is defined to be the ring whose

elements are the same elements as in R, with addition law defined to be the addition
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in R, but with multiplication performed in the reverse order, i.e, the opposite of
(R, +,.) is the ring (R,+,*) whose multiplication * is defined by x *y = y.x for all
x,y € R. This ring will be denoted by R°P.

Remarks 4.2. The following statements hold.

1) The opposite of the opposite of R is isomorphic to R, i.e, (R°P)°P = R.
2) R°P =R if and only if R is commutative.

3) The right ideals of a ring R are the left ideal of its opposite, and vice versa.
4) A ring R is central (resp., simple; resp., a division ring) if and only if its

opposite ring is so.

Theorem 4.3. If A is an n-dimentional central simple algebra over a filed K, then

A®g A% = M, (K).

Proof. Since M,,(K) is isomorphic to Endg(A), it suffices to prove that A®
A°P = Endy(A). Let ae A and b € A°P. The map:

¢a,b: A — A

x +— axb

is clearly an element of Endg(A). It induces a map

v: A®gA°? — Endg(A)
(@b)  —  Pap
Plainly, 1 is bilinear and is also multiplicative since 1, 45(x) = acxdb = 1, o
Pa(x), for all x € A and (a,b), (c,d) € A®g A°P. It follows by the universal

property of the tensor product that there is an algebra homomorphism
¢: AQy A°P — Endyg(A).

By the fourth assertion of the last remark and Theorem[3.7] the algebra AQ A°P

is simple. Hence ¢ is injective. Moreover, we have dim(A ®g A°P) = n? =
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Endg(A), so ¢ is bijective.

We define an equivalence relation on central simple algebras over a field K

as indicated in the following definition.

Definition 4.4. Let A and B be central simple K-algebras. We say that A and B are
similar or Brauer equivalent and we denote A ~ B, if there is a division ring D such
that A = M,,(D) and B = M, (D), for suitable positive integers m,n. Equivalently,
they are similar, if M,(A) = M, (B), for some positive integer n.

Notation: One can easily see that the similarity relation defined above, is
an equivalence relation. The similarity class of a central simple algebra A will
be denoted simply by [A], and the set of all Brauer equivalence classes will be
denoted by Br(K). In particular, K and M,,(K) have the same class in Br(K), for
all n € IN.

Proposition 4.5. The similarity relation is compatible with the tensor product, i.e,
if A, B, A and By are central simple algebras over a field K with A ~ Band A| ~ By,
then A®K Al ~ B®K Bl'
Proof. Indeed, let D and D, be division K-algebras such that
A=M,(D), B=M,(D), Ay = My,(D;) and By = M(Dy).

Then, we have

A ®K Al = Mn(D) ®K Mp(Dl) = an(D ®K Dl)l

B ®K Bl = Mm(D) ®K Ms(Dl) = Mms(D ®K Dl)-

Our result follows from these isomorphisms.
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Theorem 4.6. If K is an arbitrary field, then Br(K) is an abelian group with respect
to the law induced by the tensor product: [A].[B] := [A®x B], for any central simple
algebras A and B over K. This group is called the Brauer group of the field K.

Proof. By Proposition [4.5] this law is well defined. Plainly, for any central
simple K-algebra A, we have AQg K = A, so [K](= [M,(K)] for any positive inte-
ger n) is the identity element of Br(K). By Therorem [4.3] the opposed element
of [A]in Br(K) is given by the class of its opposite algebra, that is, -[A] = [A°P].
Also, for any central simple K-algebras C, D, we have C®g D = D ®k C, which

shows that Br(K) is an abelian group.

Definition 4.7. Let A be a central simple K-algebra. The order of [A] in the Brauer
group is called the exponent of A and will be denoted by exp(A).

Example 4.8. The exponent of the quaternion algebra H defined in Example[2.4]is
2.

Proposition 4.9. If A and B are central simple K-algebras, then A = B if and only
if A~ B and dimg(A) = dimg(B).

Proof. If A ~ B, then there is a skew field D such that A = M,,(D) and
B =M, (D) for some integer m, n. Since A and B have the same dimension, then

n =m, hence A = M, (D) = B. The reverse is obvious.

Lemma 4.10. Assume that K is an algebraically closed field and let D be a division
algebra over the field K, Then D = K. That is, the only division algebra over K is K
itself.

Proof. Let dimg(D) = m and let @ € D. Since the powers 1,a,...,a™ are
linearly dependent over K, a is a root of a monic polynomial f € K[X]. We

choose f with minimal degree; let f be aroot of f in K, then f(X) = g(X)(X-J)
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for some g € K[X]. As the degree of f is minimal, then g(a) # 0. Since D is a
divison algebra, then necessarily @« = g (€ K). This proves that D C K. The

reverse inclusion is clear.

Corollary 4.11. The Brauer group of every algebraically closed field is trivial, i.e,
if K is an algebraically closed field, then Br(K) = {1}.

Proof. This follows from Lemma [4.10}

Definition 4.12. Let A be a K-algebra and i an automorphism of A. We say that
Y in an inner automorphism, if there is an invertible element a of A such that

P(x) = axa™! for all x € A.

Theorem 4.13. (Skolem, Noether)
Let A and B be K-algebras with A central simple and B simple. Let f,g: B— A

be two K-algebra homomorphisms. Then there is an invertible element a € A such

that f(b) = ag(b)a~! for all b € B.

Proof. We first suppose that A = M,,(K), for some n € IN. It is clear that
K™ can be endowed with a natural M, (K)-module and so, by means of the
homomorphsim f (resp., g) K" can also be seen as a B-module. More explicitly,
by means of the action bx = f(b)x for all b € B and x € K" (resp., bx = g(b)x for
b € Band x € K"). We denote these B-modules by V¢ and V, respectively. Since
Bis simple, it follows by Theoremsandthat V¢ and V; are isomorphic.

Let ¢: Vy —> V, be a B-isomorphism. Hence we have
Y(f(b)x) = g(b)(x) forall xe K" and b € B.

Since 1 is an isomorphism, then f(b) = ¢"!¢(b)p and ¥ is clearly an element
of Endg(K") = M,,(K) = A. This shows the result in this case.
For the general case, A ®g A°P is a matrix algebra by Theorem and the
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algebra By AP is simple by Theorem We apply the fist part to the maps
f®id,g®id: Bx A® — A®g A°P
There exists an invertible element b € A ®x A°P such that
(1) feid(x®y)=b(g®id)(x®y)b~!, for all xe B and y e A°P.

In particular, if we take x = 1 we get 1 ®y = b(1®7y)b~! for all y € A°P, which
means that, b is an element of Z,g 400 (K ® A°P), hence an element of A®k K
by the Lemma Thus, b =b’®1 for some b’ € A. Taking y =1 in (1) we get
f(x)=b’g(x)b""! for all x € B, which ends the proof.

Corollary 4.14. Let A be a central simple K-algebra. Then every automorphism of

A is an inner automorphism.

Proof. Let ¢ be an algebra automorphism of A. To show that ¢ is an inner

automorphism of A, it suffices to take in the previous theorem B = A, f = id

and g = 1.

Theorem 4.15. Let A be a central simple K-algebra and let B be a simple K-

subalgebra of A. Then its centralizer C = Z4(B) is also simple. Moreover, we have:

dimg(A) = dim (B)dimg (C).

Proof. To show that C is simple, we will show that C = Endr(A), where T
is the simple K-algebra B ®y A°P. Note that the K-algebra A can be viewed as
a left T-module for the operation defined by linearly extending the following
equalites:

(B®a)x=pxa, forall a € A°P, B Band x € A.

Consider the map ¢ : C — Endp(A), defined by i(c)(x) = cx, for all ce C and
x € A. It is easy to see that 1 is a K-algebra homomrphsim. Let c € Ker(y), i.e,
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Y(c) is the zero endomorphism. In particular, we have c = i(c)(1) = 0, hence ¢
is injective. One can easily see that 1 is also surjective. Indeed, let f € Endr(A)

and let ¢ = f(1), then for every element b € B we have:
cb=(1®b)c=(1b)f(1)=f((1®b)1)=f(D).
we have also

be=(b®1)c=(b®1)f(1)= f(bo1)l) = f(b).

Consequently, bc = cb, that is, ¢ € C. Moreover, for any x € A, we have

ple)(x) =cx=(1@x)c=(1@x)f(1) = f(1®x)1) = f(x)

Thus f = ¥(c), which proves that ¢ is surjective.

Now, we prove the dimention equality. From Theorem the K-algebra T
is simple and by Theorem there is a unique T-module M, up to isomor-
phism, and every T-module is a finite direct sum of copies of M. In particular,
A = M", for some n € N. Let D = Endp(M). As M is a simple T-module, it
follows by Schur’s lemma that D is a division algebra. We proved above that

C = Endr(A). Hence we have
C = Endr(A) = Endr(M") = M, (Endr(M)) = M,,(D).
Therfore, we have
dimg (C) = dimy (M, (D)) = n*dimg (D). (1)

It is clear that M is also a D-module, so by Theorem we have M = D?, for

some s € IN. we also have
T = EndD(M) = EndD(DS) = MS(D)

Thus A = D™, hence
dimg(A) = nsdimg (D). (2)
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On the other hand, we have
dimg(A)dimg(B) = dimg(T) = dimg (M,(D)) = s>dimg (D).  (3)
From the identities (1),(2) and (3) we get dimg (B)dimg(C) = dimg(A) = nsdimg(D).

Corollary 4.16. Let A,B and C as in the Theorem Then the following prop-
erties hold.

1) Z4(ZA(B)) = B. In particular, we have Z(Z4(B)) = Z(B).
2) If B is central, then A = BQg C.

Proof. Clearly we have B C Z,(Z4(B)). For the reverse inclusion, take C’ =

Z4(C). By Theorem C is a simple algebra and we have :

dimg(C)dimg(C’) = dimg(A).

. di A
dimg(C) = dlirrrrlllli((B))

So, dimg(B) = dimg(C’) = dimg(Z4(Z4(B))). This proves the reverse inclusion.

It follows then that
Z(ZA(B)) = Za(Z4(B)) N Z4(B) = BN ZA(B) = Z(B).

Assume that B is central and let ¢ : B®x C — A be the K-algebra homo-
morphism defined by ¢(b®c) = bc, for all b € B and ¢ € C. Since B®g C is
simple, then ¢ is injective. It is also surjective since A and B® C have the same

dimension.

5. Central simple algebras under field extensions

In this section, we define the scalar extension of a K-algebra by an arbi-

trary field extension of K. We focus especially on the case where the algebra
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is simple, then we define and study properties of the reduced norm and trace

which are natural generalisations of the classical norm and trace.

Definition 5.1. Let A be a K-algebra and let L be a field extension of K. The L-
algebra AQg L is called the scalar extension of A by L. We will denote it simply by
Aj.

Remarks 5.2. Let A and L as in Definition Then we have:

2. When A is a central simple K-algebra, then Ay is also central simple over L.

Definition 5.3. Let A be a central simple K-algebra. We say that A is split if A =1
in Br(K), that is, A = M,,(K) for some n € IN.

Definition 5.4. Let A be a central simple K-algebra and let L be a field extension
of K. If the L-algebra A is split, then we say that L is a splitting field of A.

An important example of splitting field will be given by the following

lemma.

Lemma 5.5. Let A be a central simple algebra over a field K. Then the algebraic
closure K of K is a splitting field of A. Moreover, the dimension of A over K is a

square.

Proof. Extend the K-algebra A to the algebraic closure K. As seen in Re-
mark Az is simple and by the Wedderburn’s theorem, there is a central
divison K-algebra D such that Ax = M, (D), for some integer n. By Lemma
we get D = K, thus Ag = Mn(f), that is, A is split by K. We have also

dimg(A) = dimg(Ag) = dimg(M,,(K) = n?.

Definition 5.6. Let A be a central simple K-algebra with dimg(A) = n?. The inte-
ger n is called the degree of A and will be denoted by deg(A).
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Definition 5.7. Let A = M,,(D) be a central simple K-algebra, where D is a division
central K-algebra. The degree of D is called the index of A and will be denoted by
ind(A).

Definition 5.8. Let A be a central simple K-algebra. A subfield of A is a subalgebra
E of A (over K) such that E is a field. We say that E is a maximal subfield of A, if
there is no other subfield F of A that contains E. We say that E is a strictly maximal

subfield of A if dimgE = deg(A).

Theorem 5.9. Let A be a central simple K-algebra and L a subfield of A. Let B =
Z(L), then Ap ~ B.

Corollary 5.10. Let A be a central simple K-algebra of degree n. If L is strictly
maximal subfield of A, then L is a splitting field of A.

Proof. Since L is assumed to be strictly maximal in A, then by definition
[L : K] = n. Note that A can be seen as a left A-module and also as a right L-
module. Consider the map ¢ : A®yx L — Endj(A) = M,(L) which is defined
by
PY(a®A)(b)=abA, foralla,be Aand A e L.

One can easily see that ¢ is an L-algebra homomorphism. As seen in Remark
[5.2)2), the L-algebra A ®k L is simple, hence ¢ is injective. 1 is also surjective
since dimg(A;) = n® = dimg(M,,(L)). Consequently, A; = M,,(L), which means
that L is a splitting field of the K-algebra A.

Definition 5.11. Let K be a field of characteristic p > 0 and L a field extension of
K. An element a € K is called purely inseparable over K if there is n € IN such that
aP" € K. The extension L/K is said to be purely inseparable if every element of L is

purely inseparable over K.
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Remarks 5.12. (1) Purely inseparable extensions are the extreme opposite of
separable extensions.

(2) Recall that every extension of a field of characteristic zero is separable.

Lemma 5.13. Let D be a central division K-algebra. Then, there exists d € D\K

such that d is separable over K.

Proof. If char(K) = 0, then we are done. Assume that char(K) =p > 0 and
suppose that all elements of D\K are purely inseparable over K. Take a € D\K

with aP" € K for some integer n, then consider the K-linear map

f: D — D

X F Xa-—adX.

By simple computation, one sees that fP"(x) = xa?" —aP"x = 0 because a”" € K.
As a ¢ K, then f is not the zero homomorphism, so there is y € D such that
f(v) # 0. Therefore, there exists k € IN* such that f¥(y) = 0 and f¥!(p) = 0.
Let x := f¥1(y) and z := f¥~2(). We then have xa —ax = f(x) = f¥(y) = 0, thus

xa = ax. We have also f(z) = za—az = x. It follows that au = ua where u = a~'x.

1

Therefore, au = x = za—az. Since au = ua, then au™! = u1a,. Let c = zu™!, then

-1 1 1

a=(za—az)u” =zu a—azu "~ =ca-ac.

Thus, ¢ = 1 +aca™!. Since c is not in K, then by assumption it is purely insepa-

rable over K, hence there is m € N such that ¢’ € K. Hence we have

m

" = (1+aca )"
= 1+ (aca !)P"
= l+acta™!
= 1+cP",
which is not true.
The result of the last Lemma assures the existence of a separable splitting field

for any central simple algebra; precisely, we have the following theorem.
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Theorem 5.14. Let D be a central division K-algebra. Then D has a maximal
separable subfield. In particular, every central simple K-algebra has a separable

splitting field.

Let A be a central simple K-algebra of degre n and let L be any splitting
field of A. Then, A} = M, (L). Let ¢ : Ay — M, (L) be an aribtrary isomor-

phism. The characteristic polynomial of a matrix N € M,,(L) is given by:
X(X,N):=x(X,N):=det(XI,—N)eL[X].
X(X,N)=X"+a, X" ' +..+ay, where ay = (-1)"det(N) and a,,_; = —tr(N).

Definition 5.15. Let A,L and ¢ be as in above. The characteristic polynomial of
an element a € Ay (with respect to the representation ¢) is is defined by x(X,a) :=

X(X, ¢(a)).

Lemma 5.16. The definition of the characteristic polynomial does not depend of
the choice of the isomorphism ¢ and the splitting field L.

Proof. Let f : Ap — M, (L) be an other isomorphism. We have to check
that x(X, ¢(a)) = x(X, f(a)). By Skolem-Noether theorem, there is an invertible
matrix N € M,,(L) such that ¢(a) = N f(a)N~!. Hence, we have

XX, P(a)) det(XI, — ¢(a))

det(XI,—Nf(a)N~1)

det(N(XI, - f(a))N71)
det(XI, — f(a))

x(X, f(a)).

(
)

Remark 5.17. The K-algebra A can be seen as a sub-K-algebra of A} via the map
x > x® 1. Moreover, if a is an element of A, then x(X,a) € K[X].
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Definition 5.18. Let A be a central simple K-algebra of degree n. Let x(X,a) (€
K[X]) for an element a € A, be defined as in above. Write x(X,a) = x"+a" 1 X" +
..+ ag, with a; € K, the element (—1)"a is called the reduced norm of a and will
be denoted simply by N(a) or Nrda(a). The reduced trace of a is defined to be the
element —a,,_1, and will be denoted by S(a) or Trd,(a).

Remark 5.19. The bilinear form trace T : A x A — K defined by T(a,b) =

Trds(ab) is nondegenerate.

Corollary 5.20. Let A be a central simple K-algebra of degree n. Then the following

statement hold

1
2
3

) The map S : A — K is K-linear and N (ab) = N(a)N(b), for all a,b € A.

) S(ab) = S(ba), for all a,b € A.

) S(a) =na and N(a) = a”, for all a € K.

4) Let a € A, then a is invertible in A if and only if N(a) # 0. In particular, the
restriction of N to U(A) defines a group homomorphism N : U(A) — K%,

where U(A) is the group of invertible elements of A.
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